terça-feira, 10 de maio de 2011

<DIV style="height:600px; overflow:auto;">

ALGARISMOS
     Observações:

1) Quem escreve desde um número A até um número B, escreve ao todo (B – A + 1). Exemplo1: De 41 a 100 quantos número temos?
Solução:
100 – 41 + 1 = 59 + 1 = 60
Também podemos trabalhar com o sucessivo: O sucessivo de 100 é 101
Então: 101 – 41 = 60
Exemplo2: De 345 a 789 incluídos esses números, quantos inteiros e consecutivos existem?
Solução:
789 – 345 + 1 = 444 + 1 = 445
Com o sucessivo de 789 é 790 → 790 – 345 = 445
Isso ocorre com os números incluídos, mas se forem com os excluídos, a resolução passa a ser assim:  Do maior número subtraímos o sucessor do menor
Exemplo1: De 132 a 186 excluídos esses, calcule quantos números inteiros e consecutivos existem.
Sucessivo do menor 133 → 186 – 133 = 53
Exemplo2: Calcule quantos números inteiros e consecutivos existem de 20 até 251 excluídos esses.
Solução:
Sucessivo do menor 21 →  251 – 21 = 230
Excluídos e incluídos: Basta subtrair do número maior o menor
Exemplo: Calcule quantos números inteiros e consecutivos existem entre 243 excluído e 527 incluído.
Solução :
527 – 243 = 284
01) De 1 a 100 qualquer algarismo aparece 10 vezes como unidade e 10 vezes como centena.
02) De 1 a  1000 qualquer algarismo aparece 100 vezes como unidade e 100 vezes como dezena e 100 vezes como centena.
03) De 1 a 10n qualquer algarismo aparece ; 10 n -1 como unidade, 10 n-1 com dezena e 10 n-1 como centena.
04) Quantidade de algarismos:  Q(x) = n(x + 1) -  10n – 10
                                                                                     9

EXERCÍCIOS RESOLVIDOS

01) Quantos algarismos são necessários para se escrever os números ímpares de 5 até 175.
Solução: O sucessor de 175 é 176.
Q(x) = 3x – 108            (0-1-2-3-4-5 seis números que serão retirados)
Q(x) = 3 x 176 – 108  → Q(x) = 528 – 108  → Q (x) = 420
420 – 6 = 207 algarismos
Resposta .: 207 algarismos

02) Quantos algarismos são necessários para escrevermos todos os números de 1 a 934, inclusive.
Solução: O sucessor de 934 é 935
de  1  a  10   =  1 x   9 =        9
de  10 a 100 =  2 x 90 =   + 180
                                         189 algarismos
935 – 100 = 835 → 835 x 3 = 2505 → 2505 + 189 = 2694 algarismos
Resposta.: 2694 algarismos

2)    Quantos algarismos são necessários para escrevermos todos os números de 7 a 32.427, inclusive.
Solução:
O sucessor de 32.427 é 32.428.
de  7     a      10       =  1 x        3    =          3
de  10   a     100     =  2 x       90    =        180
de  100  a    1000  =   3 x    900    =        2700
de  1000 a  10.000 = 4 x  9.000    =  +  36.000
                                                          38.883
32.428 – 10.000 = 22.428 → 22.428 x 5 = 112.140 → 112.428 + 38.883 = 151.023
Resposta.: 151.023 algarismos
    
03) Calcular o número de algarismos necessários para se escrever todos os números
de  5 algarismos.
Solução:
Na = n x 9 x 10 n-1
Na = 5 x 9 x 10 5-1 = 5 x 9 x 10 4 = 5 x 9 x 10000 = 450.000 algarismos

04) Calcular o número algarismos necessários para se escrever todos os números de sete algarismos. Solução:
 Na = 7 x 9 x 10 7-1 = 63 x 10 6 = 63 x 1000000 = 63.000.000 algarismos

05) Para numerar as 126 páginas de uma apostila, calcule quantos algarismos foram
necessários.
Solução.
O sucessor de 126 é 127
                       páginas        algarismos
de  1   a 10  =   1 x     9           =     9
de  10 a 100 =  2 x    90           = 180
                                99              189
127 – 100 = 27 → 27 x 3 = 81 algarismos → 81 + 189 = 270 algarismos
Resposta.: 270 algarismos

06) Em um teatro há 150 poltronas. Calcule quantos algarismos serão necessários
Para enumerá-las.
Solução.
O sucessor de 150 é 151
                     poltronas          algarismos
de 1 a  10   =   1 x     9               =      9
de 10 a 100 =  2 x    90               =  180    
                               99                   189     
151 – 100 = 51 → 51 x 3 = 153 → 153 + 189 = 342 algarismos
Resposta.; 342 algarismos

08) Em um cinema há 130 cadeiras. Calcule quantos algarismos serão necessários
Para enumerá-las.
Solução.
O sucessor de 130 é 131
                               cadeiras       algarismos
de  1 a  10      = 1 x      9             =     9
de  10  a 100 =  2 x     90             = 180
                                  99                189
     131 – 100 = 31 → 31 x 3 = 93 algarismos → 93 + 189 = 282 algarismos
     Resposta .: 282 algarismos

09) Se um livro tiver 2.593 páginas, quantos algarismos serão necessários para enu-
merá-las?
Solução.
O sucessor de 2.593 é 2.594.
                                    páginas           algarismos
de  1    a   10    =   1 x        9                 =        9
de  10  a   100  =   2 x      90                 =   180
de  100 a  1000 =  3 x   900                =   2700
                                         999                     2889
2.594 – 1000 = 1.594→ 1.594 x 4 = 6.376 algarismos → 6.376 + 2.889 = 9.265
Resposta .: 9.265 algarismos

10) Para enumerar as páginas de um livro foram necessários 270 algarismos.
Calcular quantas páginas tem esse livro.
Solução.
Para o número de páginas
Não precisamos do sucessivo.
                                Páginas
De  1  a   10  =   1 x   9           =     9
De 10  a  100 =  2 x  90          =  180
                               99              189
270 – 189 = 81 → 81 ÷ 3 = 27 páginas → 27 + 99 = 126 páginas
Resposta .: 126 paginas.

11) Para enumerar as páginas de um livro foram necessários 570 algarismos.
Calcule quantas páginas tem esse livro.
Solução
                              páginas           algarismos
de 1 a      10  =   1 x    9               =      9
de  10  a 100 =  2 x    90               =  180                   
                                 99                   189
570 – 189 = 381 algarismos → 381 ÷ 3 = 127 páginas → 127 + 99 = 226 páginas
Resposta.: 226 páginas

12) Para enumerar as páginas de um livro foram necessários 3.421 algarismos. Calcule quantas páginas tem esse livro. Solução
                               páginas           algarismos
de  1  a  10      =     1 x       9                =      9
de  10  a 100   =     2 x    90               =   180
de  100 a 1000 =   3 x  900              =  2700
                                  999                  2889
3.421 – 2889 = 532 algarismos → 532 ÷ 3 = 133 páginas → 133 + 999 = 1.132
Resposta.: 1.132 páginas 

13) Calcular o número necessário de algarismos para se escrever todos os números naturais de 1 a 88.
Solução O sucessor de 88 é 89
de 1 a 10  = 1 x 9  =  9
89  –10    = 79 → 79 x 2 = 158 algarismos → 158 + 9 = 167 algarismos
Resposta.: 167 algarismos

14) Determinar o número de algarismos necessários para se escrever os números naturais de 30 a 176.
Solução.
O sucessor de 176 é 177
100 – 30   = 70 → 70 x 2 =     140 algarismos
176 – 100 = 76 → 76 x 3 =  + 228 algarismos
                                                   368 algarismos
Resposta .: 368 algarismos

15) Calcular o número de algarismos necessários para se escrever todos os números de 30 a 91. Solução .
O sucessor de 91 é 92
92 – 30 = 62 → 62 x 2 = 124 algarismos
Resposta.; 124 algarismos

16) Quantos algarismos são necessários para escrevermos todos os números de 1 a 934, inclusive. Solução.
O Sucessor de 934 é 935
de  1    a   10  =  1 x    9   =     9
de  10  a  100 =  2 x  90  = 180
                                              189
935 – 100 = 835 algarismos → 835 x 3 = 2.505 algarismos → 2.505 + 189 = 2.694
Resposta.: 2.694 algarismos

17)Determinar o número de algarismos necessários para se escrever os números ímpares de 5 até 175 inclusive.
Solução
O Sucessor de 175 é 176.
de  5  a  10 = 5, 7 e  9 → 3 ÷ 3 = 1
176 – 100  = 76 → 76 ÷ 2 = 38 números ímpares
100 – 10    = 90 → 90 ÷ 2 = 45 números ímpares
  3 x 1 =     3
45 x 2 =   90
38 x 3 = 114
               207
Resposta .: 207 algarismos

18) Se um livro tiver 2.593 páginas, quantos algarismos serão necessários para enumerá-las. Solução.
O sucessor de 2.593 é 2.594
                                         páginas               algarismos
de  1 a  10         =        1 x       9                =        9
de  10  a  100    =        2 x    90                =    180
de  100  a 1000 =       3 x  900               =  2.700
                                             999                   2.889

2.594 – 1000 = 1.594 algarismos → 1.594 x 4 = 6.376 algarismos
6.376 + 2.889 = 9.265 algarismos
Resposta .: 9.265 algarismos

19) Um tipógrafo gastou 630 tipos de um algarismo para numerar as páginas de um livro. Quantas páginas tem esse livro?
                                 páginas         algarismos
de  1  a  10     =  1  x      9                =        9
de  10  a  100 =  2  x   90                = + 180
                                      99                       189
630 – 189 = 441 algarismos → 441 ÷3 = 147 páginas → 147 + 99 = 246 páginas
Resposta.:  246 páginas

20) Quantos algarismos utilizamos para escrever todos os números naturais entre o maior de três algarismo e o menor de dois algarismos inclusive.
Solução.
Maior de três algarismos  →    999
Menor de dois algarismos →     10
O sucessor de 999 é 1000 → 1.000 – 100 = 900 algarismos → 900 x 3 = 2.700
100 – 10 = 90 algarismos → 90 x  2 = 180 algarismos                              +     180
Resposta.: 2.880 algarismos                                                                             2.880

21) Escrevendo-se a sucessão dos números naturais dos inteiros sem separar os algarismos.Determinar o algarismo que ocupa o 1200o lugar.
Solução.
de  1 a   10  = 1   x   9   =      9
de  10 a 100 = 2  x   90 = 180                                      
                                            189
1200 – 189 = 1.011 → 1.011 ÷ 3 = 337 → 337 + 99 = 436
Resposta .: 6

22) Escrevendo-se a sucessão dos números naturais sem separar os algarismos, qual será o algarismo que ocupa o 3.456o lugar.
Solução
3.456 – 189 = 3.267 → 3.267 ÷ 3 = 1.089 → 1.089 + 99 = 1.188
Resposta.: 8

23) Escrevendo todos os números (012345678910111213...) utilizamos 2.890 algarismos, o último algarismo que foi escrito é.
Solução.
Q (x) = 4x – 1106
2.890 = 4x – 1106 → 4x – 1106 = 2.890→ 4x = 2.890 + 1106 → 4x = 3.996
X =  3.996  → x = 999
           4
Resposta.: 9
  
24) Escrevendo-se a sucessão dos números naturais sem separar os algarismos determine o algarismo que ocupa o 985o lugar.
Solução.
985 – 189 = 796 → 796 ÷ 3 = 265, sobra resto 1→ 265 + 99 = 364
Resposta.; Como o resto foi um, o algarismo é o primeiro da esquerda para a direita, no caso 3

25) Escrevendo-se a série natural dos números inteiros sem separar os algarismos, obtém-se 12345678791011121314... Determine o algarismo que ocupa o 1.173o.
Solução.  1.173 – 189 = 984 → 984 ÷ 3 = 328→ 328 + 99 = 427
Resposta .; 7

26) Escrevendo-se a série dos números inteiros sem separar os algarismos . Determinar o algarismo que ocupa 1200o lugar.
Solução
1200 – 189 = 1.011 → 1.011 ÷ 3 = 337 → 337 + 99 = 436

27) Escrevendo-se a sucessão dos números, sem separar os algarismos, calcule o algarismo que ocupa 1.536o lugar.
Solução.
1.536 – 189 = 1.347 → 1.347 ÷ 3 = 449  → 449 + 99 = 548
Resposta . 8

28) Escrevendo-se a sucessão dos números naturais, sem separar os algarismos, determine o algarismo que ocupa o 2.342o lugar.
Solução.
2.342 – 189 = 2153 → 2.153 ÷ 3 = 717, mas tem resto 2
717 + 99 = 816, mas como o resto é 2 , toma-se o segundo algarismo da direita para à esquerda.
Resposta . : 1

29) Determinar o número de vezes que o algarismo 3 aparece na sucessão dos números de 1 a 100.000
Solução.
100.000 tem 5 zeros
Nv = n x 10 n-1  → Nv = 5 x 10 5-1 = 5 x 10 4 = 5 x 10.000 = 50.000 vezes
Resposta.: 50.000 vezes

30) Determinar o número de vezes que o algarismo 7 ocupa a posição das dezenas na sucessão dos números  de 1 a 10.000.
Solução
Dezenas  =  101
Centenas =  105          A = 105 = 105-1 = 104 = 10.000                                         
                                             10
Resposta .: 10.000

31) Escrevendo-se de 1 até 537, determine quantas vezes aparecerá o algarismo 8.
Solução.
537 = 5  x  100 + 3  x  10 +7                                  
Nv = 5 (2 x 102-1) + 3 ( 1 x 101-1) = 5 x 2 x 10 + 3  x 1 x 1 = 5 x 20 + 3 = 103 

31)Quando se escreve dos números naturais de 1 a 1.000, quantas vezes aparece o algarismo 2 como algarismo das unidades?
Solução:
Nv = 10 n-1 → n = número de zeros, então, n = 3
Nv = 10 3-1 = 10 2 100
Resposta .: 100 vezes     Obs.  Pode ser qualquer algarismo das unidades
 
Observação
algarismos
De 1   a   10   =                          1  x             9 =                  9
De 10  a   100 =                        2  x           90 =              180
De 100  a 1.000 =                    3  x          900 =          2.700
De 1.000  a 10.000 =              4  x        9000 =        36.000
De 10.000  a  100.000 =         5  x     90.000 =     450.000
De e 100.000 a  1.000.000 = 6 x    900.000 =  5.400.000
</DIV>

4 comentários:

  1. (Espp- Banpara 2012) 19- o total de algarismo 3 necessarios para escrever todos os numeros consecutivos de 29 a 245 e:

    gabarito c) 52

    como resolver essa questao????????

    obrigada
    Vivian

    ResponderExcluir
  2. tou com um problema pra resolver esta questao nao tou conseguido.determine o numeros de vezes que aparece o algarismo 5 aparece quando se escreve de 1 ate 537

    ResponderExcluir
  3. determinar o numero de vezes que o algarismo 7 aparece na sucessão dos números de 1 ate 5966????

    ResponderExcluir